
C Piscine
C 13

Summary: This document is the subject for the module C 13 of the C Piscine @ 42.

Version: 6.0

Contents
I Instructions 2

II AI Instructions 4

III Foreword 6

IV Exercise 00 : btree_create_node 7

V Exercise 01 : btree_apply_prefix 8

VI Exercise 02 : btree_apply_infix 9

VII Exercise 03 : btree_apply_suffix 10

VIII Exercise 04 : btree_insert_data 11

IX Exercise 05 : btree_search_item 12

X Exercise 06 : btree_level_count 13

XI Exercise 07 : btree_apply_by_level 14

XII Submission and peer-evaluation 15

1

Chapter I

Instructions

• Only this page serves as your reference, do not trust rumors.

• Watch out! This document may change before submission.

• Ensure you have the appropriate permissions on your files and directories.

• You must follow the submission procedures for all your exercises.

• Your exercises will be checked and graded by your fellow classmates.

• Additionally, your exercises will be evaluated by a program called Moulinette.

• Moulinette is meticulous and strict in its assessment. It is fully automated, and
there is no way to negotiate with it. To avoid unpleasant surprises, be as thorough
as possible.

• Moulinette is not open-minded. If your code does not adhere to the Norm, it won’t
attempt to understand it. Moulinette relies on a program called norminette to
check if your files comply with the Norm. TL;DR: Submitting work that doesn’t
pass norminette’s check makes no sense.

• These exercises are arranged in order of difficulty, from easiest to hardest. We will
not consider a successfully completed harder exercise if an easier one is not fully
functional.

• Using a forbidden function is considered cheating. Cheaters receive a grade of -42,
which is non-negotiable.

• You only need to submit a main() function if we specifically ask for a program.

• Moulinette compiles with the following flags: -Wall -Wextra -Werror, using
cc.

• If your program does not compile, you will receive a grade of 0.

• You cannot leave any additional file in your directory beyond those specified in
the assignment.

• Have a question? Ask the peer on your right. If not, try the peer on your left.

2

C Piscine C 13

• Your reference guide is called Google / man / the Internet / ...

• Check the "C Piscine" section of the forum on the intranet or the Piscine on Slack.

• Carefully examine the examples. They may contain crucial details that are not
explicitly stated in the assignment...

• By Odin, by Thor! Use your brain!!!

• For the following exercises, we’ll use the following structure :

typedef struct s_btree
{

struct s_btree *left;
struct s_btree *right;
void *item;

} t_btree;

• You’ll have to include this structure in a file ft_btree.h and submit it for each
exercise.

• From exercise 01 onward, we’ll use our btree_create_node, so make arrangements
(it could be useful to have its prototype in a file ft_btree.h...).

3

Chapter II

AI Instructions

● Context
The C Piscine is intense. It’s your first big challenge at 42 — a deep dive into problem-
solving, autonomy, and community.

During this phase, your main objective is to build your foundation — through struggle,
repetition, and especially peer-learning exchange.

In the AI era, shortcuts are easy to find. However, it’s important to consider whether your
AI usage is truly helping you grow — or simply getting in the way of developing real skills.

The Piscine is also a human experience — and for now, nothing can replace that. Not
even AI.

For a more complete overview of our stance on AI — as a learning tool, as part of the
ICT curriculum, and as a growing expectation in the job market — please refer to the
dedicated FAQ available on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices
and countermeasures to avoid common pitfalls.

4

C Piscine C 13

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your projects. But you’re here to

learn, not to prove that AI has learned. Don’t waste your time (or ours) just to
demonstrate that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. AI gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones,
etc. You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own AI software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

✓ Good practice:
I’m stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

✗ Bad practice:
I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I’m stuck again. I fail.

5

Chapter III

Foreword

Here’s the list of releases for Venom :

- In League with Satan (single, 1980)
- Welcome to Hell (1981)
- Black Metal (1982)
- Bloodlust (single, 1983)
- Die Hard (single, 1983)
- Warhead (single, 1984)
- At War with Satan (1984)
- Hell at Hammersmith (EP, 1985)
- American Assault (EP, 1985)
- Canadian Assault (EP, 1985)
- French Assault (EP, 1985)
- Japanese Assault (EP, 1985)
- Scandinavian Assault (EP, 1985)
- Manitou (single, 1985)
- Nightmare (single, 1985)
- Possessed (1985)
- German Assault (EP, 1987)
- Calm Before the Storm (1987)
- Prime Evil (1989)
- Tear Your Soul Apart (EP, 1990)
- Temples of Ice (1991)
- The Waste Lands (1992)
- Venom ’96 (EP, 1996)
- Cast in Stone (1997)
- Resurrection (2000)
- Anti Christ (single, 2006)
- Metal Black (2006)
- Hell (2008)
- Fallen Angels (2011)

Today’s subject will seem easier if you listen to Venom.

6

Chapter IV

Exercise 00 : btree_create_node

Exercise 00

btree_create_node
Turn-in directory: ex00/

Files to turn in: btree_create_node.c, ft_btree.h
Allowed functions: malloc

• Create the function btree_create_node which allocates a new element. It should
initialise its item to the value of the argument, and all other elements to 0.

• The address of the created node is returned.

• Here’s how it should be prototyped :

t_btree *btree_create_node(void *item);

7

Chapter V

Exercise 01 : btree_apply_prefix

Exercise 01

btree_apply_prefix
Turn-in directory: ex01/

Files to turn in: btree_apply_prefix.c, ft_btree.h
Allowed functions: None

• Create a function btree_apply_prefix which applies the function given as an
argument to the item of each node, using prefix traversal to traverse the tree.

• Here’s how it should be prototyped :

void btree_apply_prefix(t_btree *root, void (*applyf)(void *));

8

Chapter VI

Exercise 02 : btree_apply_infix

Exercise 02

btree_apply_infix
Turn-in directory: ex02/

Files to turn in: btree_apply_infix.c, ft_btree.h
Allowed functions: None

• Create a function btree_apply_infix which applies the function given as an ar-
gument to the item of each node, using infix traversal to traverse the tree.

• Here’s how it should be prototyped :

void btree_apply_infix(t_btree *root, void (*applyf)(void *));

9

Chapter VII

Exercise 03 : btree_apply_suffix

Exercise 03

btree_apply_suffix
Turn-in directory: ex03/

Files to turn in: btree_apply_suffix.c, ft_btree.h
Allowed functions: None

• Create a function btree_apply_suffix which applies the function given as an
argument to the item of each node, using suffix traversal to traverse the tree.

• Here’s how it should be prototyped :

void btree_apply_suffix(t_btree *root, void (*applyf)(void *));

10

Chapter VIII

Exercise 04 : btree_insert_data

Exercise 04

btree_insert_data
Turn-in directory: ex04/

Files to turn in: btree_insert_data.c, ft_btree.h
Allowed functions: btree_create_node

• Create a function btree_insert_data which inserts the element item into a tree.
The tree passed as argument will be sorted: for each node, all lower elements are
located on the left side, and all higher or equal elements are located on the right.
We’ll also pass a comparison function similar to strcmp as an argument.

• The root parameter points to the root node of the tree. When called for the first
time, it should point to NULL.

• Here’s how it should be prototyped :

void btree_insert_data(t_btree **root, void *item, int (*cmpf)(void *, void *));

11

Chapter IX

Exercise 05 : btree_search_item

Exercise 05

btree_search_item
Turn-in directory: ex05/

Files to turn in: btree_search_item.c, ft_btree.h
Allowed functions: None

• Create a function btree_search_item which returns the first element related to
the reference data given as an argument. The tree should be traversed using infix
traversal. If the element isn’t found, the function should return NULL.

• Here’s how it should be prototyped :

void *btree_search_item(t_btree *root, void *data_ref, int (*cmpf)(void *, void *));

12

Chapter X

Exercise 06 : btree_level_count

Exercise 06

btree_level_count
Turn-in directory: ex06/

Files to turn in: btree_level_count.c, ft_btree.h
Allowed functions: None

• Create a function btree_level_count which returns the size of the largest branch
passed as an argument.

• Here’s how it should be prototyped :

int btree_level_count(t_btree *root);

13

Chapter XI

Exercise 07 : btree_apply_by_level

Exercise 07

btree_apply_by_level
Turn-in directory: ex07/

Files to turn in: btree_apply_by_level.c, ft_btree.h
Allowed functions: malloc, free

• Create a function btree_apply_by_level which applies the function passed as an
argument to each node of the tree. The tree must be browsed level by level. The
function called will take three arguments :

◦ The first argument, of type void *, corresponds to the node’s item ;

◦ The second argument, of type int, corresponds to the level at which we find
it: 0 for the root, 1 for children, 2 for grand-children, etc. ;

◦ The third argument, of type int, is worth 1 if it is the first node of the level,
or 0 otherwise.

• Here’s how it should be prototyped :

void btree_apply_by_level(t_btree *root, void (*applyf)(void *item, int current_level, int is_first_elem));

14

Chapter XII

Submission and peer-evaluation

Submit your assignment to your Git repository as usual. Only the work inside your
repository will be evaluated during the defense. Make sure to double-check the filenames
to ensure they are correct.

You must submit only the files specified in the project instructions.

15

	Instructions
	AI Instructions
	Foreword
	Exercise 00 : btree_create_node
	Exercise 01 : btree_apply_prefix
	Exercise 02 : btree_apply_infix
	Exercise 03 : btree_apply_suffix
	Exercise 04 : btree_insert_data
	Exercise 05 : btree_search_item
	Exercise 06 : btree_level_count
	Exercise 07 : btree_apply_by_level
	Submission and peer-evaluation

